Today we’re making interactive plots in plotly
.
library(tidyverse)
library(p8105.datasets)
library(plotly)
Use plotly
to make quick plots
A scatterplot
nyc_airbnb |>
mutate(text_label = str_c("Price: ", price,
"\nNeighborhood: ", neighbourhood)) |>
plot_ly(x = ~lat,
y = ~long,
color = ~price,
text = ~text_label,
type = "scatter",
mode = "markers",
alpha = 0.5)
A boxplot
nyc_airbnb |>
mutate(neighbourhood = fct_reorder(neighbourhood, price)) |>
plot_ly(x = ~neighbourhood,
y = ~price,
color = ~neighbourhood,
type = "box")
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
A bar chart
nyc_airbnb |>
count(neighbourhood) |>
mutate(neighbourhood = fct_reorder(neighbourhood, n)) |>
plot_ly(x = ~neighbourhood,
y = ~n,
type= "bar")
Other plots in plotly
plot_ly(z = volcano,
type = "heatmap")
plot_ly(type = "choropleth",
locations = c("AZ", "CA", "VT"),
locationmode = "USA-states",
colorsclae = "Viridis",
z = c(10, 20, 40)) |>
layout(geo = list(scope = "usa"))
## Warning: 'choropleth' objects don't have these attributes: 'colorsclae'
## Valid attributes include:
## 'autocolorscale', 'coloraxis', 'colorbar', 'colorscale', 'customdata', 'customdatasrc', 'featureidkey', 'geo', 'geojson', 'hoverinfo', 'hoverinfosrc', 'hoverlabel', 'hovertemplate', 'hovertemplatesrc', 'hovertext', 'hovertextsrc', 'ids', 'idssrc', 'legendgroup', 'legendgrouptitle', 'legendrank', 'locationmode', 'locations', 'locationssrc', 'marker', 'meta', 'metasrc', 'name', 'reversescale', 'selected', 'selectedpoints', 'showlegend', 'showscale', 'stream', 'text', 'textsrc', 'transforms', 'type', 'uid', 'uirevision', 'unselected', 'visible', 'z', 'zauto', 'zmax', 'zmid', 'zmin', 'zsrc', 'key', 'set', 'frame', 'transforms', '_isNestedKey', '_isSimpleKey', '_isGraticule', '_bbox'